Home Site map
Instytut Chemii Organicznej - Polskiej Akademii Nauk Jezyk Polski  Język Angielski
Instytut Chemii Organicznej -Polskiej Akademii Nauk
Home / Research groups / Group IV

Group IV

Chemistry of sucrose. Application of simple carbohydrates as chiral building blocks [IV]

Head of the group:
Professor Sławomir Jarosz
e-mail: slawomir.jarosz@icho.edu.pl
Ph.D. in 1979 at the Institute of Organic Chemistry of the Polish Academy of Sciences under Professor Aleksander Zamojski.
Post-doc in Waterloo University (Canada) and University of Maryland (USA) 1980/81 with Professor Bert Fraser-Reid.
Visiting Scientist in Duke University (USA) 1988/89 (host - Professor B. Fraser Reid).
Habilitation in 1990
Full Professor 1999

Head of the Ph.D. Studies at the Institute of Organic Chemistry, Polish Academy of Sciences (1998-2004)
Research Director of the Institute of Organic Chemistry (2004-2010)
Co-ordinator of the Center of Excellence in Development of New Therapeutics from Sugars (CEDNETS) (2003 – 2005)
Polish Representative in the ERA-Chemistry network (2006-2008)
Co-ordinator of the project: ‘Sugars as Raw Materials in the Synthesis of the Products with High-Added Value’ (ca. 6 mln euro) from European Regional Development Fund (POIG.01.01.02).
Director of the Institute of Organic Chemistry (2011-...)


Dr. Anna Korda; Zbigniew Pakulski D.Sc.; Dr. Mykhaylo A. Potopnyk, Dr. Anna Osuch-Kwiatkowska, mgr inż. Karolina Obacz.

Ph.D. students:

Bartosz Chaciak; Kinga Kuczyńska; Katarzyna Łęczycka-Wilk; Patrycja Sokołowska; Łukasz Szyszka.


Katarzyna Gwardiak; Romuald Karczewski

Research activities

Four main topics are currently under investigation.

First one is connected with the modification of sucrose molecule at the terminal positions. 2,3,3',4,4’-Penta-O-benzyl- or 1’,2,3,3',4,4’-hexa-O-benzylsucrose (both synthesized for the first time in our laboratory) serve as starting materials for the preparation of many analogs such as: "higher sucroses" (homologated by 2-7 carbon atoms at either terminal position: C6, C1’ and C6’), uronic acids and amines. We are especially interested in the preparation of the crown ether analogs (also with other than oxygen heteroatoms in the macrocyclic ring) with incorporated sucrose unit and to study the enantioselective complexation of chiral amines with such macrocycles. We proved that these compounds show high enantioselectivity towards alpha-phenylethylamine. We are also engaged in the preparation of sucrose receptors with higher (C2) symmetry and cryptands with sucrose scaffold.

Second topic is connected with the methodology of stereocontrolled preparation of carba- and aza-bicyclic sugar mimetics: derivatives of bicyclo[4.3.0]nonane and bicyclo[4.4.0]decane. These targets can be prepared via a multi-step synthesis from sugar allyltin derivatives. Recently we have proposed two alternative approaches towards such mimetics excluding (toxic) organostannanes.

Third topic is connected with the synthesis of higher carbon sugars (also C-disaccharides) having more than 10 carbon atoms in the chain (C11 up to C25) by coupling of two (or more) suitably activated monosaccharide subunits. Synthesis of long chain alditols, as well as, cyclic highly oxygenated derivatives with large-size rings is carried out.

Fourth topic is connected with the synthesis of biologically active oligosaccharides, triterpenes and saponins based on triterpenes isolated from white birch bark (lupane saponins), which have shown high cytotoxic activity.

Selected scientific publications:

S. Jarosz Guest Editor: Current Organic Chemistry (2 issues): Simple sugars in organic synthesis: the stereochemical and biological aspects: part-I and part-II, 2014, 18, issue 13 and 14

Reviews and monographs

  1. Jarosz, S. J. Carbohydr. Chem., 2015, 34, 365-387. Fine chemicals with high added value from sucrose: synthesis of macrocyclic receptors from ‘normal’ sugar.
  2. Potopnyk, M.A.; Jarosz, S. Adv. Carbohydr. Chem. Biochem., 2014, 71, 227-295. Nitrogen-containing macrocycles having a carbohydrate scaffold,
  3. Osuch-Kwiatkowska, A.; Jarosz, S. Curr. Org. Chem., 2014, 18, 1674-1685. Synthesis of polyhydroxylated carbocyclic derivatives with medium rings
  4. Pakulski, Z.; Poly, F.; Dorabawila, N.; Guerry, P.; Monteiro, M. A. Curr. Org. Chem., 2014, 18, 1818–1845. 6-Deoxyheptoses in nature, chemistry, and medicine.
  5. Jarosz, S.; Nowogródzki, M.; Magdycz, M.; Potopnyk, M.A. RSC Special Periodic Reports Carbohydr. Chem., 2012, vol. 37, chapter 11 p. 303-325. Carbobicyclic sugar mimics.
  6. Jarosz, S. Curr. Org. Chem. 2008, 12, 985-994. From higher carbon sugars to carbocyclic sugar mimics.
  7. Queneau, Y.; Jarosz, S.; Lewandowski, B.; Fitremann, J. Adv. Carbohydr. Chem. Biochem. 2007, 61, 221-300. Sucrose Chemistry and Applications of Sucrochemicals.
  8. Jarosz, S.; Listkowski, A. Curr. Org. Chem. 2006, 10, 643-662. Sugar derived crown ethers and their analogs: synthesis and properties.
  9. Pakulski, Z. Polish J. Chem. 2006, 80, 1293-1326. Seven membered ring sugars: a decade update.

Original articles

  1. Malik, M.; Jarosz, S. Org. Biomol. Chem., 2016, 14, 1764-1776. Synthesis of Polyhydroxylated Pyrrolidines from Bromonitriles through a Cascade Addition of Allylmagnesium Bromide/Cyclization/Reduction.
  2. Sidoryk, K.; Korda, A.; Rárová, L.; Oklešťková, J.; Pakulski, Z.; Strnad, M.; Cmoch, P.; Gwardiak, K.; Karczewski, R. Eur. J. Org. Chem. 2016, 373–383. Synthesis and cytotoxicity of 28a-homothiolupanes and 28a-homothiolupane saponins.
  3. Kuczynska, K.; Cmoch, P.; Rárová, L.; Oklešťková, J.; Korda, A.; Pakulski, Z.; Strnad, M., Carbohydr. Res. 2016, 423, 49-69. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers.
  4. Łęczycka, K.; Jarosz, S. Tetrahedron, 2015, 71, 9216-9222. Synthesis of novel macrocyclic derivatives with a sucrose scaffold by the RCM approach.
  5. Sidoryk, K.; Korda, A.; Rárová, L.; Oklešťková, J.; Strnad, M.; Cmoch, P.; Pakulski, Z.; Gwardiak, K.; Karczewski, R.; Luboradzki, R. Tetrahedron 2015, 71, 2004–2012. Synthesis and biological activity of new homolupanes and homolupane saponins.
  6. Kuczynska, K.; Pakulski, Z. Tetrahedron 2015, 71, 2900–2905. Synthesis of lupane saponins from acetylated glycosyl donors by acetonitrile directed glycosylation.
  7. Pakulski, Z.; Cmoch, P. Tetrahedron 2015, 71, 4757–4769. Study on the synthesis of regio- and stereoisomers of the disaccharide unit of the OSW-1 saponin.
  8. Pakulski, Z.; Gajda, N.; Jawiczuk, M.; Frelek, J.; Cmoch, P.; Jarosz, S. Beilstein J. Org. Chem., 2014, 10, 1246-1254. Synthesis of a sucrose dimer with enone tether; a study on its functionalization.
  9. Malik, M.; Witkowski, G.; Jarosz, S. Org. Lett., 2014, 16, 3816-3819. Carboxybenzyl Group as an O-Nucleophile in the C-H Allylic Oxidation: Total Synthesis of (−)-Castanospermine.
  10. Cmoch, P.; Korda, A.; Rárová, L.; Oklešťková, J.; Strnad, M.; Luboradzki, R.; Pakulski, Z. Tetrahedron 2014, 70, 2717–2730. Synthesis and structure–activity relationship study of cytotoxic lupane-type 3-O-monodesmosidic saponins with an extended C-28 side chain.
  11. Cmoch, P.; Korda, A.; Rárová, L.; Oklešťková, J.; Strnad, M.; Gwardiak, K.; Karczewski, R.; Pakulski, Z. Eur. J. Org. Chem. 2014, 4089–4098. Synthesis of lupane-type saponins containing an unusual -D-idopyranoside fragment as potent cytotoxic agents.
  12. Osuch-Kwiatkowska, A.; Jarosz, S. Tetrahedron: Asymmetry, 2013, 24, 468-473. Approach to highly oxygenated monocyclic derivatives with large rings.
  13. Potopnyk, M.A.; Jarosz, S. Eur. J. Org. Chem., 2013, 5117-5126. Synthesis and complexing properties of ‘unsymmetrical’ sucrose-based receptors.
  14. Witkowski, G.; Jarosz, S. Synlett, 2013, 1813-1817. New approach to sugar dienes; useful building blocks for the synthesis of bicyclic derivatives.
  15. Magdycz, M.; Jarosz, S. Tetrahedron: Asymmetry, 2013, 24, 1412-1416. Synthesis of polyhydroxylated aza-bicyclic compounds from sugar allyltins.
  16. Malik, M.; Witkowski, G.; Ceborska, M.; Jarosz S., Org. Lett., 2013, 15, pp. Synthesis of polyhydroxylated quinolizidines and azaspiro[4.5]decanes from D-xylose. DOI: 10.1021/ol403063v.
  17. Nowogródzki, M.; Malik, M.; Jarosz, S. Tetrahedron: Asymmetry, 2012, 23, 1501-1511. Synthesis of highly oxygenated decalins from sugar allyltins. An access to sulfur and phosphorus derivatives.
  18. Potopnyk, M.A.; Cmoch, P.; Jarosz, S. Org. Lett., 2012, 14, 4258-4261. Short Synthesis of Diamide-Linked Sucrose Macrocycles.
  19. Cmoch, P.; Pakulski, Z. Tetrahedron, 2012, 68, 7435-7440. Influence of bromide ions on the synthesis of anomeric thiocyanates.
  20. Potopnyk, M.A.; Lewandowski, B.; Jarosz, S. Tetrahedron: Asymmetry, 2012, 23, 1474-1479. Novel sucrose-based macrocyclic receptors for enantioselective recognition of chiral ammonium cations.
  21. Cieplak, M.; Jarosz, S. Tetrahedron: Asymmetry, 2011, 22, 1757-1762. Synthesis of long-chain monosaccharides by coupling of three ‘normal’ sugar units via Wittig type methodology. Unusual removal of the benzyl group under basic conditions.
  22. Lewandowski, B.; Jarosz, S. Org. Lett., 2010, 12, 2532-2535. Amino-Acid Templated Assembly of Sucrose-Derived Macrocycles.
  23. Jarosz, S.; Lewandowski, B. Carbohydr. Res., 2008, 343, 965-969. Synthesis and complexing properties towards ammonium cation of aza-coronand analogues containing sucrose molecule.
  24. Cmoch, P.; Pakulski, Z.; Swaczynová, J.; Strnad M. Carbohydr. Res., 2008, 343, 995-1003. Synthesis of lupane-type saponins bearing mannosyl and 3,6-branched trimannosyl residues and their evaluation as anticancer agents.
  25. Piekutowska, M.; Pakulski, Z. Carbohydr. Res., 2008, 343, 785-792. Synthesis of S-glyco-sylthiophosphates, thiophosphonates and thiophosphinates by the Michaelis–Arbuzov rearrangement of anomericthiocyanates.
  26. Pakulski, Z. Synthesis, 2003, 2074-2078. Glycosylation in ionic liquids.
  27. Jarosz, S.; Mach, M. J. Chem. Soc., Perkin Trans. 1, 1998, 3943-3948. Phosphonate versus phosphorane method in the synthesis of higher carbon sugars. Preparation of D-erythro-L-manno-D-gluco-dodecitol.
Instytut Chemii Organicznej - Polskiej Akademii Nauk Innowacyjna Gospodarka Europejski Fundusz Rozwoju Regionalnego Biuletyn Informacji Publicznej